

Repurposing HMD's Built-in Sensors to Increase Users' Awareness

Yu-Chun (Arthur) Ku¹, Joyraj Bhowmick¹, Anirejuoritse Egbe¹ Instructor: Alejandro Martin-Gomez

1. Robotics MSE, Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA

Introduction

Although the human binocular field of view (FoV) is nearly 180°, the degree of visual information reduces from the center of vision to the extreme ends on both sides.

Main Purpose: Increase spatial awareness of user

- Faster identification of objects: Reduce the time to identify objects in given surroundings
- Visualization UIs for objects: Easily locate the objects of interest, both in and out-

Methods

Marker Detection

- Perform camera calibration for each camera to acquire correct 3D pose of ArUco Marker.
- Obtain frame transformations for each camera that with respect to L-F camera.

Interaction

• Create interactable virtual object (button) for each marker.

• Require users to click the object to check if they identified the correct marker.

Visualization Methods

- 3D Radar: A sonar that ranges 45 degrees in the horizontal direction on both sides of the user's center.
- 3D Arrows: Utilize Unity's LookAt function to point the tip of the arrow in the direction of an activated marker.
- EyeSee360: The rectangle represents the user's FoV and the out-of-view 3D space is shown between the rectangle and ellipse.

Experimental Setup

- HoloLens 2: The subjects will be using a HoloLens 2 headset to test the visualization methods.
- Bluetooth Clicker: Allows the user to interact with the virtual objects (buttons).

- HoloLens2 Research Mode API (C++): Access all gray-scale environmental cameras, expanding user's FoV.
- OpenCV (C++): Implement ArUco Marker detect functionality into Unity C# project.
- Unity 3D (C#): Develop virtual reality environment for all visualization methods

Experiment

- Randomly place 10 ArUco markers alongside two walls.
- Only one marker is activated at a time on visualization method, required the subject to find the correct marker.
- The subject will test each visualization method for identifying and interacting with markers.
- Accuracy and time of completion was recorded for each trial.

mage: https://www.microsoft.com/en-us/research/blog/n <u>icilitates-computer-vision-research-by-providing-</u>

Image: https://www.geekwire.com/2016/hololens interface-leaked-in-app-walkthrough-video

OpenCV

Three Visualization Methods

Results

Preliminary Data Collection Results:

- Highest Average Completion Time: **3D Radar**
- Lowest Average Completion Time: **3D Arrows**
- Highest Average Accuracy: 3D Arrows & EyeSee 360
- Lowest Average Accuracy: **3D Radar**
- Most Preferred Visualization: **3D Radar**
- Least Preferred Visualization: **3D Arrows**

	3DRadar	3DArrows	EyeSee360
Average Completion Time (in sec)	87.55	70.78	73.68
Average Accuracy (out of 1)	0.82	0.91	0.91

Conclusions

From the preliminary results, we conclude that:

- 3D Radar was most preferred due to:
- Visualizations for height
- Seemed more user friendly/intuitive to users
- 3D Arrows was least preferred due to:
- Confusion between different colored arrows
- No relation of color to object distance
- 3D Arrows took the least time due to:
- Direct pointing to the object
- 3D Radar took the most time due to:
- Locating the marker in Azimuth
- Then, locating the marker in Altitude
- Interesting to note that 3D Radar took the most time but was still preferred.

Acknowledgement

This project would not have been possible without the constant help and support of Prof. Alejandro Martin-Gomez, Yihao Liu, An Chi Chen, and Sing Chun Lee. We are also grateful to Prof. Martin-Gomez for providing us with a HoloLens 2.

References:

F. Bork, C. Schnelzer, U. Eck and N. Navab, "Towards Efficient Visual Guidance in Limited Field-of-View Head-Mounted Displays," in IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 11, pp. 2983-2992, Nov. 2018, doi: 10.1109/TVCG.2018.2868584.

Image: https://en.wikipedia.org/wiki/OpenCV Image: https://chev.me/arucogen https://www.pngegg.com/en/png -einvk/download

Image:

3DRadar

3DArrows

EyeSe ..

user 5

user 4

Accuracy

user 1

user 2

user 3

Users

0.9

0.8